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Let G be a primitive permutation group on a finite set X and
x ∈ X. Let d be the length of some Gx-orbit on X \ {x}. It is
easy to see that d = 1 implies Gx = 1 (and G ∼= Zp for a prime p)
and d = 2 implies Gx

∼= Z2 (and G ∼= D2p for an odd prime p). In
[Math. Z. 95 (1967)], Ch. Sims adapted arguments by W. Tutte
concerning vertex stabilizers of cubic (i.e. of valency 3) graphs
in vertex-transitive groups of automorphisms (see [Proc. Camb.
Phil. Soc. 43 (1947)] and [Canad. J. Math. 11 (1959)]) to prove
that d = 3 implies |Gx| divides 3 · 24. In connection with this
result Ch. Sims made the following general conjecture which is
now well known as the Sims conjecture.

SIMS CONJECTURE. There exists a function f : N →
N such that, if G is a primitive permutation group on a
finite set X, Gx is the stabilizer in G of a point x from X,
and d is the length of some non-trivial Gx-orbit on X\{x},
then |Gx| ≤ f (d).

Some progress toward proving this conjecture had been obtained
in papers of Sims (Math. Z. 95 (1967)), Thompson (J. Algebra
14 (1970)), Wielandt (Ohio State Univ. Lecture Notes, 1971),
Knapp (Math. Z. 133 (1973), Arch. Math. 36 (1981)), Fomin
(In: Sixth All-Union Symp. on Group Theory, Naukova Dumka,
Kiev, 1980). So, Thompson and independently Wielandt proved
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that |Gx/Op(Gx)| is bounded by some function of d for some
prime p. Fomin proved that |Gx| is bounded by some function of
the maximal length of Gx-orbits. But only with the use of the
classification of finite simple groups, the validity of the conjecture
was proved by Cameron, Praeger, Saxl and Seitz (Bull. London
Math. Soc. 15 (1983)).

The Sims conjecture can be formulated in terms of graphs as
follows.

For an undirected connected graph Γ (without loops or multiple
edges) with vertex set V (Γ), G ≤ Aut(Γ), x ∈ V (Γ), and i ∈
N∪{0}, we will denote by G[i]

x the elementwise stabilizer in G of
the (closed) ball of radius i of the graph Γ centered at x in the
natural metric dΓ on V (Γ).

Let G be a primitive permutation group on a finite set X,
|X| > 1, x ∈ X, and M = Gx. Fix an element a ∈ G with
a(x) 6= x. Consider the graph Γ with vertex set V (Γ) = X

and edge set E(Γ) = {{g(x), ga(x)} | g ∈ G}. Then Γ is
an undirected connected graph, G is an automorphism group
of Γ acting primitively on V (Γ), and the length of the M -orbit
containing a(x) is equal either to the valency of Γ (if there exists
an element in G that transposes x and a(x)) or to the half of
the valency of Γ (otherwise). Therefore, the Sims conjecture is
equivalent to the following statement.

SIMS CONJECTURE (GEOMETRICAL FORM).
There exists a function ψ : N ∪ {0} −→ N such that, if
Γ is an undirected connected finite graph and G is its
automorphism group acting primitively on V (Γ), then
G

[ψ(d)]
x = 1 for x ∈ V (Γ), where d is the valency of the

graph Γ.
Using the classification of finite simple groups, the authors

obtained in (Dokl. Math. 59 (1999)) the following result, which
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establishes the validity of a strengthened version of the Sims
conjecture.

THEOREM 1. If Γ is an undirected connected finite
graph and G its automorphism group acting primitively
on V (Γ), then G

[6]
x = 1 for x ∈ V (Γ).

In other words, automorphisms of connected finite graphs with
vertex-primitive automorphism groups are determined by images
of vertices of any ball of radius 6.

Actually, we proved a result which is stronger than Theorem
1 (Theorem 2 below). It is formulated in terms of subgroup
structure of finite groups. To formulate the result, we need the
following definitions.

Recall that, for a group G and H ≤ G, the subgroup HG =⋂
g∈G gHg

−1 is called the core of the subgroup H in G.
For a group G, its subgroups M1 and M2, and any i ∈ N,

let us define by induction subgroups (M1,M2)
i and (M2,M1)

i of
M1∩M2, which we will be called the ith mutual cores of M1 with
respect to M2 and of M2 with respect to M1, respectively. Put

(M1,M2)
1 = (M1 ∩M2)M1, (M2,M1)

1 = (M1 ∩M2)M2.

For i ∈ N, assuming that (M1,M2)
i and (M2,M1)

i are already
defined, put

(M1,M2)
i+1 = ((M1,M2)

i ∩ (M2,M1)
i)M1,

(M2,M1)
i+1 = ((M1,M2)

i ∩ (M2,M1)
i)M2.

THEOREM 2. Let G be a finite group, and let M1

and M2 be distinct conjugate maximal subgroups of G.
Then, the subgroups (M1,M2)

6 and (M2,M1)
6 coincide and

are normal in the group G.
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Under the hypothesis of Theorem 1 for |V (Γ)| > 1, if we set
M1 = Gx and M2 = Gy, where x and y are adjacent vertices of
the graph Γ, then G[i]

x ≤ (M1,M2)
i and G[i]

y ≤ (M2,M1)
i for all

i ∈ N. Thus, Theorem 1 follows from Theorem 2.
The following result is also derived from Theorem 2.
Corollary. Let G be a finite group, let M1 be a maximal

subgroup of G, and let M2 be a subgroup of G containing (M1)G
and not contained in M1. Then the subgroup (M1,M2)

12 coincides
with (M1)G.

We constructed also some examples which show that the constant 6

in Theorems 1 and 2 cannot be decreased, the constant 12 in
Corollary cannot be decreased and the condition of maximality
of the subgroup M1 in G in Corollary is essential.

Theorem 2 immediately follows from a stronger result, which
we are planning to prove in a series of papers.

Let G, M1, and M2 satisfy the hypothesis of Theorem 2. We
are interested in the case where (M1)G = (M2)G = 1 and 1 <

|(M1,M2)
2| ≤ |(M2,M1)

2|. The set of all such triples (G,M1,M2)

is denoted by Π. Consider triples from Π up to the following
equivalence: the triples (G,M1,M2) and (G′,M ′

1,M
′
2) from Π are

equivalent if there exists an isomorphism of G on G′ taking M1

to M ′
1 and M2 to M ′

2.
The group G acts by conjugation faithfully and primitively

on the set X = {gM1g
−1 | g ∈ G}. According to a refinement

of the Thompson–Wielandt theorem (1970) for the case under
consideration the product (M1,M2)

2(M2,M1)
2 is a nontrivial p-

group for some prime p.
Depending on the form of the socle Soc(G) of the group G,

we partition the set Π into the following subsets:
Π0 is the set of triples (G,M1,M2) from Π such that Soc(G)

is not a simple nonabelian group, i.e., G is not an almost simple
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group;
Π1 is the set of triples (G,M1,M2) from Π with Soc(G) isomorphic

to an alternating group;
Π2 is the set of triples (G,M1,M2) from Π \ Π1 with Soc(G)

isomorphic to a simple group of Lie type over a field of a characteristic
different from p;

Π3 is the set of triples (G,M1,M2) from Π \ (Π1 ∪ Π2) with
simple Soc(G) isomorphic to a simple group of Lie type over a
field of characteristic p;

Π4 is the set of triples (G,M1,M2) from Π with Soc(G) isomorphic
to one of the 26 finite simple sporadic groups.

For a nonempty set Σ of triples (G,M1,M2), where G is a
finite group and M1 and M2 are distinct conjugate maximal
subgroups of G, define c(Σ) to be the maximum positive integer c
such that (M1,M2)

c−1 6= 1 or (M2,M1)
c−1 6= 1 for some triple

(G,M1,M2) ∈ Σ. If such a maximum number does not exist,
we set c(Σ) = ∞. Define c(G,M1,M2) = c({(G,M1,M2)}) and
c(∅) = 0.

It was announced in (Dokl. Math. 59 (1999)) that c(Π0) ≤
max1≤i≤4 c(Πi), c(Π1) = 0, c(Π2) = 3, c(Π3) = 6, and c(Π4) = 5.
Theorem 2 follows from the equality c(Π) = 6.

Now we state the following problem which generalizes essentially
Theorem 2 and can be considered as a stronger form of the Sims
conjecture.

PROBLEM. Describe the set Π more precisely and
find all triples from Π \ Π0 up to equivalency.

The problem is of interest for finite group theory because the
study of maximal subgroups is very important for finite group
theory. Although local maximal subgroups of finite almost simple
groups are now classified, their intersections are not sufficiently
investigated. IfG is a finite almost simple group and (G,M1,M2) ∈
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Π\Π0, thenM1 andM2 are some distinct conjugate local maximal
subgroups in G whose intersection M1 ∩M2 is large in a sense
(i. e., c(G,M1,M2) > 1 or c(G,M2,M1) > 1).

The problem is also of interest for graph theory since the set
Π can be used to get a description of undirected connected finite
graphs Γ whose automorphism group G acts primitively on V (Γ)

and G[2]
x 6= 1 for x ∈ V (Γ).

The aim of our series of papers is to solve the Problem.
In the first paper of this series (Trudy IMM UrO RAN 20, no.

4 (2014); translation in Proc. Steklov Inst. Math. 289, Suppl. 1
(2015)), we prove the following two theorems.

THEOREM 3 (REDUCTION THEOREM).
If (G,M1,M2) ∈ Π0, then Soc(G) = T k, where T is a simple
nonabelian group, k > 1, and the inequality

c(G,M1,M2) ≤ c(H,H1, H2)

holds for some group H such that Soc(H) ∼= T and some
district conjugate maximal subgroups H1 and H2 of H.
In particular, c(Π0) ≤ max1≤i≤4 c(Πi).

THEOREM 4. The set Π1 is empty and, consequently,
c(Π1) = 0.

In the second paper of the series (Trudy IMM UrO RAN 22,
no. 2 (2016); translation in Proc. Steklov Inst. Math. 295, Suppl.
1 (2016))), we prove the following theorem.

THEOREM 5. Let (G,M1,M2) ∈ Π2, Soc(G) be a simple
group of exceptional Lie type and let M1 ∩ Soc(G) be
a non-parabolic subgroup of Soc(G). Then (M1,M2)

3 =

(M2,M1)
3 = 1 and one of the following holds:

(a) G ∼= Eε
6(r) or G ∼= Eε

6(r) : 2,
ε ∈ {+,−}, r ≥ 5 is a prime, 9|(r − ε1),
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(M1,M2)
2 = Z(O3(M1)) and (M2,M1)

2 = Z(O3(M2)) are
elementary abelian groups of order 33,

(M1,M2)
1 = O3(M1) and (M2,M1)

1 = O3(M2) are special
groups of order 36,

the group M1/O3(M1) is isomorphic to SL3(3) for G ∼=
Eε

6(r) and is isomorphic to GL3(3) for G ∼= Eε
6(r) : 2,

the groupM1/O3(M1) acts faithfully on O3(M1)/Z(O3(M1))

and induces the group SL3(3) on Z(O3(M1)), |Z(O3(M1))∩
Z(O3(M2))| = 32

and M1 ∩M2 = NM1∩Soc(G)(Z(O3(M1)) ∩ Z(O3(M2)));
(b) G ∼= Aut(3D4(2)),
(M1,M2)

2 = Z(M1) and (M2,M1)
2 = Z(M2) are groups of

order 3, not contained in Soc(G),
M1

∼= Z3 × ((Z3 × Z3) : SL2(3)),
(M1,M2)

1 = O3(M1), (M2,M1)
1 = O3(M2)

and M1 ∩M2 is a Sylow 3-subgroup in M1.
In any case of items (a) and (b), the triples (G,M1,M2)

from Π exist and form one class up to equivalence.
In the third paper of this series (Trudy IMM UrO RAN 22,

no. 4 (2016); translation in Proc. Steklov Inst. Math. 299, Suppl.
1 (2017)), we prove the following theorem.

THEOREM 6. Let (G,M1,M2) ∈ Π2, Soc(G) be a simple
group of classical non-orthogonal Lie type and let M1 ∩
Soc(G) be a non-parabolic subgroup in Soc(G). Then //
(M1,M2)

3 = (M2,M1)
3 = 1 and one of the following holds:

(a) G ∼= Aut(L3(3)), (M1,M2)
2 = Z(M1) and (M2,M1)

2 =

Z((M2) are groups of order 2, non-contained in Soc(G),
M1

∼= Z2 × S4, (M1,M2)
1 = O2(M1), (M2,M1)

1 = O2(M2) and
M1 ∩M2 is a Sylow 2-subgroup in M1;

(b) G ∼= U3(8) : 31 or U3(8) : 6, (M1,M2)
2 = Z(M1) и

(M2,M1)
2 = Z(M2) are groups of order 3, not contained
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in Soc(G), M1
∼= Z3 × (Z2

3 : SL2(3)) or Z3 × (Z2
3 : GL2(3))

(M1,M2)
1 = O3(M1), (M2,M1)

1 = O3(M2) and M1 ∩ M2

is a Sylow 3-subgroup in M1 or its normalizer in M1,
respectively;

(c) G ∼= L4(3) : 22 or Aut(L4(3)), (M1,M2)
2 = Z(M1) и

(M2,M1)
2 = Z(M2) are groups of order 2, not contained

in Soc(G), M1
∼= Z2×S4×S4 or Z2× (S4 oZ2), respectively,

(M1,M2)
1 = O2(M1), (M2,M1)

1 = O2(M2) and M1 ∩M2 is a
Sylow 2-subgroup in M1.

In any case of items (a), (b) and (c), the triples (G,M1,M2)

from Π exist and form one class up to equivalence.
The description of Π2 will be completed at our fourth paper,

which is in preparation. In particular, the following theorem is
proved.

THEOREM 7. Let (G,M1,M2) ∈ Π2, Soc(G) be a simple
orthogonal group of the dimension ≥ 7 and M1 ∩ Soc(G)

be a non-parabolic subgroup in Soc(G). Then Soc(G) ∼=
PΩ+

8 (q), where q is a prime power. Moreover if q is an
odd prime, 16 divides q2 − 1, G is a finite group with
Soc(G) ∼= PΩ+

8 (q) and G contains an element inducing
on Soc(G) a graph automorphism of order 3 (so-called
triality) then there exists a triple (G,M1,M2) from Π2

such that (M1,M2)
2 = Z(O2(M1)) and (M2,M1)

2 = Z(O2(M2))

are elementary abelian groups of order 23, (M1,M2)
1 =

O2(M1) and (M2,M1)
1 = O2(M2) are special groups of order

29, the group M1/O2(M1) is isomorphic to PSL3(2)×Z3 or
PSL3(2)× S3, and M1 ∩M2 is a Sylow 2-subgroup in M1.

In subsequent papers of the series, the sets Π3 and Π4 will be
described.
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